来源:高能物理研究所
近期,中国科学院高能物理研究所理论物理室副研究员任婧联合香港科技大学的科研人员,在高频引力波探测方面提出了新的实验方案。该研究建议利用具有磁层的太阳系行星如地球和木星等,作为探测高频引力波信号的巨型探测器。该研究发现通过现有的卫星数据可以在广泛的频率范围内对高频引力波给出更强的限制。
此前,激光干涉仪引力波天文台探测到引力波,这推动了探测频率在十千赫兹以下的引力波信号的项目的进展。超出该频率的高频引力波可能在宇宙早期或极端致密天体的剧烈活动中产生,而关于它们的探测将为探索超出标准模型的新物理提供线索。这些引力波的波长较短,因此激光干涉仪难以捕捉到这类“高音”。研究发现,依赖逆格森施泰因效应的探测方法,使高频引力波在磁场中转换成光子以便探测。这一转换过程的效率受到引力波相互作用、磁场强度和传播距离的影响。同时,强度大或空间分布广的磁场可以在一定程度上弥补引力相互作用较弱的影响。现有提案考虑到实验室、致密星或星系内外等不同环境下的磁场,但这些提案的探测效果受限。
该团队提出将太阳系行星作为探测高频引力波信号的实验室,利用环绕行星的科学卫星探测引力波在行星磁层中转换产生的信号光子。考虑到天文观测所涵盖的电磁波段,该方案能够探测到相同频率的引力波转换而成的光子信号,实现对更广泛引力波频段的覆盖。同时,信号光子的特征与引力波的性质及卫星的轨道轨迹相关。与其他探测方案相比,这一方案具有磁场强度确定性高、引力波-光子转换有效路径长、信号通量角分布广等优势。研究表明,应用现有的低轨道地球卫星数据,行星磁层系统能够在广泛的频率范围内对高频引力波给出更强的限制,并覆盖大片之前未涉及的参数空间。上述成果为创新探测方法奠定了基础,也为探索宇宙的隐秘角落开辟了新视角。 相关研究成果发表在《物理评论快报》上。
研究工作得到国家自然科学基金委员会、中国科学院和香港研究资助局的支持。
行星磁层系统探测高频引力波示意图(左);低轨道地球卫星数据对随机高频引力波特征应变的95%置信水平上限(右)