含有量子点的无机-有机混合半导体材料实现了超过100%的量子效率

科技
2022-08-15
分享

来源:

       量子点是一种微小颗粒或纳米晶体,即直径在2-10纳米(10-50个原子)之间的半导体材料。在含有量子点的无机-有机混合半导体产生的光电流中,量子效率超过了100%。

 

图1 嵌入锡基纳米粒子的钙钛矿型半导体材料晶格结构。中国香港和韩国合作的国际团队实现了超过100%量子效率的光电转换。(图片来源:Heno Hwang,韩国科学技术院)

 

       钙钛矿材料作为一类半导体,在光收集应用领域十分引人注目,钙钛矿太阳能电池的性能也趋近于成熟。然而,提高光转换效率仍然是这项技术应用于更广泛市场的一大难题。

 

       光的能量是量子化的,称为光子。当一个半导体吸收一个光子时,电磁能量传递到带一个负电荷的电子和带一个正电荷的空穴上。电场可以使这些粒子向相反的方向运动,从而形成电流,这是太阳能电池的基本原理。虽然原理很容易理解,但优化量子效率,或者从入射光子中获得尽可能多的电子-空穴对,仍然是亟待解决的问题。

 

       低效率的一个原因是,如果光子的能量超过了产生电子-空穴对所需的能量,多余的能量以热能的形式耗散。然而,纳米材料提供了一种解决方案——小颗粒,即纳米晶体,也称量子点,可以使高能光子传递更多的能量产生电子-空穴对。

 

       近日,韩国科学技术院的Jun Yin和Omar Mohammed团队与香港理工大学Yifan Chen和Mingjie Li团队合作,在卤化锡钙钛矿纳米晶体中展示了这种多重激子的产生(以下简称MEG)。Yin说:“通过在钙钛矿纳米晶体设备中应用MEG,其光电量子效率提高了一倍以上。”

 

       先前研究表明,MEG在带隙交大的钙钛矿型纳米晶体中可以观察到,即只能吸收高能光子的半导体。

 

       因此,由于电子-空穴对解耦合或耗散太快,它们无法被一个正常工作的太阳能电池设备收集,这对窄带隙半导体材料造成更大的挑战。Yin说:“迄今为止人,仍未有在窄带隙钙钛矿纳米晶体中的高效MEG及在实际光学器件中固有MEG的证明。”

 

       Chen-Yin团队合成了一种半导体材料,这种材料由微小的甲脒锡-碘化铅钙钛矿颗粒——少量锡制成——嵌入到无锡的FAPbI3中。该团队认为,锡的引入有助于减缓“冷却”速度。Yin说:“通过改变其组成,我们将能够进一步优化钙钛矿纳米晶体,以获得更高的MEG性能和改善光电转换效率。”

 

       以上研究成果已发表在期刊《Nature Photonics》上。

THE END
广告、内容合作请点击这里 寻求合作
免责声明:本文系转载,版权归原作者所有;旨在传递信息,不代表强国网-科技强国的观点和立场。

相关热点

光学分辨率光声显微镜(OR-PAM)凭借光/声共聚焦实现细胞级、无标记活体成像,但长期受制于光源昂贵、红光信号弱、声光耦合效率低三大问题,限制...
科技
钙钛矿量子点具有成本低、合成工艺简单、光谱连续可调等多种优势,近年来备受关注,发展迅猛,器件外量子效率已提高至20%以上。然而,量子点在纯...
科技
研究人员运用具有数百年历史的针孔成像原理,开发出一种无需透镜的高性能中红外成像系统。这种新型相机能够在大范围距离内和弱光条件下拍摄极其...
科技
2023年,中国科学家首次在双层镍氧化物La3Ni2O7单晶中发现了超导转变起始温度Tc接近80K的高温超导特征,引起了全球科研团队的广泛关注。通过国内...
科技
近年来,随着微电子学的不断进步,电子器件正朝着小型化、集成化的趋势发展。在纳米尺度下,表面效应和尺寸效应将变得不可忽略,这制约了传统块...
科技

相关推荐

1
3